ISI BANGALORE

December 2020

DIFFERENTIAL GEOMETRY

100 Points

Notes.

- (a) This exam is for 3 hours.
- (b) You may freely use any result proved in class. All other steps must be justified.
- (c) \mathbb{R} = real numbers.

1. [20 points] Let $\gamma(t)$ be a unit-speed plane curve with nonzero curvature everywhere. Suppose there exists a constant $c \in \mathbb{R}$ such that $\gamma(t) \cdot N(t) = c$ where N(t) denotes the principal normal to $\gamma(t)$. Prove the following

- (i) $\gamma(t)$ is a part of a circle centred at the origin.
- (ii) c < 0 and the radius of the circle in (i) is -c.

2. [20 points] Let C be the curve in \mathbb{R}^2 given by $2x^2 + 3y^2 = 1$. Calculate the value of the signed curvature κ_s at any point (x_0, y_0) on C. Find the maximum and minimum values of κ_s on C.

3. [20 points] Let S_1 and S_2 be the surfaces given by $\sin(x + y) - e^{y+z} + 1 = 0$ and $(x+1)^2 + y(z+1) - 1 = 0$ respectively. Verify that both S_1 , S_2 are regular near the origin and that the intersection $S_1 \cap S_2$ is a regular curve C near the origin. Finally, find the tangent line to C at the origin.

4. [20 points] Let $U = \{(u, v) \in \mathbb{R}^2 \mid v > 0\}$, the upper half plane in \mathbb{R}^2 . Suppose S is a regular surface in \mathbb{R}^n and $\sigma: U \to S$ a chart such that the associated first fundamental form on U is

$$ds^2 = \frac{1}{v^2}(du^2 + dv^2).$$

Consider the line segments L_1 , L_2 , L_3 in U given by

 $L_1 = \{(0,b) \mid b \in [1,2]\}, \qquad L_2 = \{(a,a+1) \mid a \in [0,1]\}, \qquad L_3 = \{(a,2) \mid a \in [0,1]\}.$

- (i) Calculate the length of the image curves $\sigma(L_i)$ on S.
- (ii) Calculate the angles between the curves $\sigma(L_i)$ and $\sigma(L_j)$ at their intersection points.
- (iii) Calculate the area of the region bounded by the three curves $\sigma(L_1), \sigma(L_2), \sigma(L_3)$.

5. [20 points] Let S be the torus, realised as a surface of revolution obtained by rotating about the z-axis, the profile curve in the x-z plane given by $(x-2)^2 + (z)^2 = 1$.

- (i) Find points p_1, p_2, p_3 on S such that the Gaussian curvature K satisfies $K(p_1) < 0$, $K(p_2) = 0, K(p_3) > 0.$
- (ii) At each of the points p_i , find the tangent plane, a unit normal and the principal curvatures of S at p_i .